PDA

View Full Version : Myostatin lowering with natural food sources



DarrenW29
02-12-2023, 01:45 PM
Epicatechin
(-)-Epicatechin (EC) is a flavonol, anti-oxidant, and bioactive stereoisomer of catechin that is used as a food supplement and found in cocoa and green tea (Gadkari and Balaraman, 2015). EC treatment also reduced MSTN expression and significantly increased the levels of myogenic marker genes responsible for muscle growth in the quadriceps muscles of mice, and it has been well-established aging is associated with higher MSTN levels but reduced levels of several myogenic genes such as FST, MYOG, and MyoD (Mafi et al., 2019). These findings suggest EC promotes SM development by inhibiting MSTN.

Sulforaphane
Sulforaphane (SFN), which is found in cruciferous vegetables, is a bioactive isothiocyanate that inhibits the activity of histone deacetylases (HDACs) (Myzak et al., 2006). SFN significantly reduces MSTN expression in porcine MSCs and can inhibit HDAC activities and DNA methyltransferase expression

Astragalus Polysaccharide
Astragalus polysaccharide (APS; also known as Huang Qi) is a well-known extract of Astragalus membranaceus (Fisch.) Bge (AMB) (Fu et al., 2013). Injection of APS into the SMs of non-insulin-dependent type 2 diabetic KKAy mice ameliorated insulin resistance and hyperglycemia, and reduced MSTN levels in SM, which demonstrated APS might improve insulin sensitivity and reduce SM MSTN levels by downregulating the ROS-ERK-NF-κB pathway


Glycyrrhiza Uralensis
G. uralensis is native to Asia and is used as a medicinal herb, sweetener, and in traditional Chinese medicine (Ji et al., 2016). Recently, we reported that G. uralensis inhibits MSTN expression and promotes myogenesis. In addition, liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B isolated from the EtOAc fraction of G. uralensis enhanced myoblast proliferation and differentiation, and liquiritigenin enhanced muscle regeneration in injured muscles (Lee et al., 2021b). These findings show that G. uralensis-derived compounds have therapeutic potential for the management of muscle-related disorders.


Ursolic acid
improves CKD‐induced muscle mass by suppressing the expression of myostatin and inflammatory cytokines via increasing protein synthesis and reducing proteolysis.

Using cultured C2C12 myotubes to study muscle wasting, we found that exposure to glucocorticoids cause loss of cell proteins plus an increase in myostatin; both responses are significantly suppressed by ursolic acid. Results from promoter and ChIP assays demonstrated a mechanism involving ursolic acid blockade of myostatin promoter activity that is related to CEBP/δ expression. In mouse models of CKD‐induced or dexamethasone‐induced muscle wasting, we found that ursolic acid blocked the loss of muscle mass by stimulating protein synthesis and decreasing protein degradation. These beneficial responses included decreased expression of myostatin and inflammatory cytokines (e.g. TGF‐β, IL‐6 and TNFα), which are initiators of muscle‐specific ubiquitin‐E3 ligases (e.g. Atrogin‐1, MuRF‐1 and MUSA1).



ursolic acid, which is found in apple peel, and tomatidine, which comes from green tomatoes, as small molecules that can prevent acute muscle wasting caused by starvation and inactivity. Those studies set the stage for testing whether ursolic acid and tomatidine might be effective in blocking the largest cause of muscle weakness and atrophy: aging.

In their latest study, Adams’ team found that ursolic acid and tomatidine dramatically reduce age-related muscle weakness and atrophy in mice. Elderly mice with age-related muscle weakness and atrophy were fed diets lacking or containing either 0.27 percent ursolic acid, or 0.05 percent tomatidine for two months.

The scientists found that both compounds increased muscle mass by 10 percent, and more importantly, increased muscle quality, or strength, by 30 percent. The sizes of these effects suggest the compounds largely restored muscle mass and strength to young adult levels.